Get started with ONNX Runtime Web
Contents
Install
Use the following command in shell to install ONNX Runtime Web:
# install latest release version
npm install onnxruntime-web
# install nightly build dev version
npm install onnxruntime-web@dev
Import
Use the following JavaScript code to import ONNX Runtime Web:
// use ES6 style import syntax (recommended)
import * as ort from 'onnxruntime-web';
// or use CommonJS style import syntax
const ort = require('onnxruntime-web');
If you want to use ONNX Runtime Web with WebGPU support (experimental feature), you need to import as below:
// use ES6 style import syntax (recommended)
import * as ort from 'onnxruntime-web/webgpu';
// or use CommonJS style import syntax
const ort = require('onnxruntime-web/webgpu');
If you want to use ONNX Runtime Web with WebNN support (experimental feature), you need to import as below:
// use ES6 style import syntax (recommended)
import * as ort from 'onnxruntime-web/experimental';
// or use CommonJS style import syntax
const ort = require('onnxruntime-web/experimental');
For a complete table for importing, see Conditional Importing.
Documentation
See ONNX Runtime JavaScript API for API reference. Please also check the following links for API usage examples:
- Tensor - a demonstration of basic usage of Tensor.
- Tensor <–> Image conversion - a demonstration of conversions from Image elements to and from Tensor.
- InferenceSession - a demonstration of basic usage of InferenceSession.
- SessionOptions - a demonstration of how to configure creation of an InferenceSession instance.
-
ort.env flags - a demonstration of how to configure a set of global flags.
- See also: TypeScript declarations for Inference Session, Tensor, and Environment Flags for reference.
See Tutorial: Web for tutorials.
See Training on web demo for training using onnxruntime-web.
Examples
The following examples describe how to use ONNX Runtime Web in your web applications for model inferencing:
The following are E2E examples that uses ONNX Runtime Web in web applications:
- Classify images with ONNX Runtime Web - a simple web application using Next.js for image classifying.
- ONNX Runtime Web demos for image recognition, handwriting analysis, real-time emotion detection, object detection, and so on.
- OpenAI Whisper - demonstrates how to run whisper tiny.en in your browser using onnxruntime-web and the browser’s audio interfaces.
- Facebook Segment-Anything - demonstrates how to run segment-anything in your browser using onnxruntime-web with webgpu.
The following are video tutorials that use ONNX Runtime Web in web applications:
Supported Versions
EPs/Browsers | Chrome/Edge (Windows) | Chrome/Edge (Android) | Chrome/Edge (macOS) | Chrome/Edge (iOS) | Safari (macOS) | Safari (iOS) | Firefox (Windows) | Node.js |
---|---|---|---|---|---|---|---|---|
WebAssembly (CPU) | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️[1] |
WebGPU | ✔️[2] | ✔️[3] | ✔️ | ❌ | ❌ | ❌ | ❌ | ❌ |
WebGL | ✔️[4] | ✔️[4] | ✔️[4] | ✔️[4] | ✔️[4] | ✔️[4] | ✔️[4] | ❌ |
WebNN | ✔️[5] | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
- [1]: Node.js only support single-threaded
wasm
EP. - [2]: WebGPU requires Chromium v113 or later on Windows. Float16 support requires Chrome v121 or later, and Edge v122 or later.
- [3]: WebGPU requires Chromium v121 or later on Windows.
- [4]: WebGL support is in maintenance mode. It is recommended to use WebGPU for better performance.
- [5]: Requires to launch browser with commandline flag
--enable-features=WebMachineLearningNeuralNetwork
.