ACL Execution Provider
The ACL Execution Provider enables accelerated performance on Arm®-based CPUs through Arm Compute Library.
Build
For build instructions, please see the build page.
Usage
C/C++
Ort::Env env = Ort::Env{ORT_LOGGING_LEVEL_ERROR, "Default"};
Ort::SessionOptions sf;
bool enable_fast_math = true;
Ort::ThrowOnError(OrtSessionOptionsAppendExecutionProvider_ACL(sf, enable_fast_math));
The C API details are here.
Python
import onnxruntime
providers = [("ACLExecutionProvider", {"enable_fast_math": "true"})]
sess = onnxruntime.InferenceSession("model.onnx", providers=providers)
Performance Tuning
Arm Compute Library has a fast math mode that can increase performance with some potential decrease in accuracy for MatMul and Conv operators. It is disabled by default.
When using onnxruntime_perf_test, use the flag -e acl
to enable the ACL Execution Provider. You can additionally use -i 'enable_fast_math|true'
to enable fast math.
Arm Compute Library uses the ONNX Runtime intra-operator thread pool when running via the execution provider. You can control the size of this thread pool using the -x
option.
Supported Operators
Operator | Supported types |
---|---|
AveragePool | float |
BatchNormalization | float |
Concat | float |
Conv | float, float16 |
FusedConv | float |
FusedMatMul | float, float16 |
Gemm | float |
GlobalAveragePool | float |
GlobalMaxPool | float |
MatMul | float, float16 |
MatMulIntegerToFloat | uint8, int8, uint8+int8 |
MaxPool | float |
NhwcConv | float |
Relu | float |
QLinearConv | uint8, int8, uint8+int8 |